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MATHEMATICAL ANALYSIS OF CHOLERA

EPIDEMIC MODEL WITH SEASONALITY
∗
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Abstract. In this paper, we conduct a mathematical analysis of

the cholera model proposed in [20] in the case of non periodic and

periodic contact rate β(t). We study the stability of equilibria and

show that there is always a globally asymptotically stable equilib-

rium state. Depending on the value of the basic reproduction ratio

R0, this state can be either endemic (R0 > 1), or infection - free

(R0 < 1). We demonstrate a real-world application of this model by

investigating the recent cholera outbreak in Cameroon. Meanwhile,

we present numerical results to verify the analytical prediction.
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