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NONLINEAR CONTROLLER DESIGN FOR CLASS OF
PARABOLIC-HYPERBOLIC SYSTEMS

Ghattassi Mohamed and Boutayeb Mohamed ∗†

Abstract. This contribution concerns the problem of finite di-

mensional control for a class of systems described by nonlinear

hyperbolic-parabolic coupled partial differential equations (PDE’s).

Initially, Galerkin’s method is applied to the PDE system to derive

a nonlinear ordinary differential equation (ODE) system that accu-

rately describes the dynamics of the dominant (slow) modes of the

PDE system. After, we introduce a useful nonlinear controller to

assure stabilization under convex sufficient conditions. At last, we

give a numerical example showing the effectiveness of the proposed

controller and some comments illustrate this approach.
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1 Introduction

A large number of industrially important transport-
reaction processes are inherently nonlinear and are char-
acterized by significant spatial variations because of the
underlying diffusion and convection phenomena. Rep-
resentative examples include rapid thermal processing,
plasma reactors, and crystal growth processes, to name a
few. The mathematical models which describe the spa-
tiotemporal behavior of these processes are typically ob-
tained from the dynamic conservation equations and con-
sist of systems of parabolic and hyperbolic partial differ-
ential equations (PDEs). The main feature of parabolic
PDE systems is that the eigenspectrum of the spatial
differential operator can be partitioned into a finite-
dimensional slow one and an infinite-dimensional stable
fast complement [4]. Motivated by this fact, a typical
approach to the control design of linear or semilinear
parabolic PDE systems is to obtain an approximate or-
dinary differential equation (ODE) representation of the
original PDE system by utilizing the spatial discretiza-
tion techniques, which is then used for controller design
purposes by applying different existing ODE-based linear
or nonlinear control techniques. The standard Galerkin
method was used to derive a finite-dimensional ODE
model. In general, the computation of the controller ac-
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tion becomes more expensive with increasing controller
dimension. This is one reason why full order synthesis
control has not been widely used in industry. Recently,
linear matrix inequalities (LMIs) have attained much at-
tention in control engineering [2, 6], since many control
problems can be formulated in terms of LMIs and thus
solved via convex programming approaches. In this note,
we construct a boundary controller to establish the sta-
bility of the coupled radiative-conductive heat transfer
systems in the finite dimensional. Through Lyapunov
analysis we established sufficient conditions for stability
by the feasibility of the finite-dimensional Linear Matrix
Inequalities(LMI).

This article is organized as follows. Next section de-
velops the governing equations for two-dimensional com-
bined radiative and conductive heat transfer. In section
3, the reduced model of the coupled partial differential
equations is given. The section 4, a linear and nonlinear
controller are proposed to assure stabilization under con-
vex sufficient conditions. Simulations results are given in
section 5 and the last section draws conclusions.

Notations.Throughout this paper, we will use the fol-
lowing notation:

• ‖.‖ is the Euclidean norm.

• (?) is used for the blocks induced by symmetry.

• I represents the identity matrix of appropriate di-
mension.

• AT represents the transposed matrix of A.

• For a square matrix S , S � 0 (respectively S ≺ 0)
means that this matrix is positive definite (respec-
tively negative definite).

• eTs (i) = (0, ..., 0,

ith︷︸︸︷
1 , 0, ..., 0︸ ︷︷ ︸

s components

) ∈ Rs,s > 1 is a vector

of the canonical basis of Rs.

2 Problem statement

Let Ω be a bounded domain in R2 and D the unit disk.
Thus, for the problem considered, β ∈ D = {β ∈ R2 :
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