UNBOUNDED ELLIPTIC EQUATION WITH SINGULAR CRITICAL GROWTH TO THE GRADIENT

Jaouad Igbida, Aziz Bouhlal, H. Talibi And A. El Hachimi *† $\ddagger \S$

Abstract

We are interested in the existence of positive solutions for unbounded elliptic problem with singular critical growth to the gradient of the form

$$
\left\{\begin{array}{cl}
-\operatorname{div}\left[\left(1+u^{q}\right) \nabla u\right]+\frac{|\nabla u|^{2}}{u^{\theta}}=f & \text { in } \Omega \\
u>0 & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where Ω is an open bounded set of $\mathbb{R}^{N}, N \geq 3, q>0$. For a given θ in $[1,2)$ and with less regularity on the source term, we establish an existence and regularity results of solutions.
Keywords. Quasilinear elliptic equations, Unbounded elliptic equations, critical growth, singular equations, weak solutions.

1 Introduction

We deal in this paper with the existence of solutions for elliptic problem with singular dependence with respect to the solution. The problem is the following one:

$$
\left\{\begin{array}{cl}
-\operatorname{div}\left[\left(1+u^{q}\right) \nabla u\right]+b(x) \frac{|\nabla u|^{2}}{u^{\theta}}=f & \text { in } \quad \Omega, \tag{1}\\
u>0 & \text { in } \quad \Omega, \\
u=0 & \text { on } \quad \partial \Omega,
\end{array}\right.
$$

where Ω is an open, bounded subset of $\mathbb{R}^{N},(N \geq 3)$ and $q>0$. We assume that

$$
\begin{equation*}
1 \leq \theta<2, \tag{2}
\end{equation*}
$$

and that $b(x)$ are measurable function such that

$$
\begin{equation*}
0<\alpha \leq b(x) \leq \beta . \tag{3}
\end{equation*}
$$

Moreover f is a positive function belonging to some Lebesgue space $L^{m}(\Omega)$, with $m \geq 1$.
A possible motivation for the study of these problems arises from the Calculus of Variations. If $0 \leq f \in L^{m}(\Omega)$, $m>\frac{N}{2}$ and $r \in(0,1)$, a purely formal computation shows

[^0]that the EulerLagrange equation associated to the functional
is
$$
-\operatorname{div}\left[\left(1+|u|^{1-r}\right) \nabla u\right]+\frac{1-r}{2} \frac{u}{|u|^{1+r}}|\nabla u|^{2}=f .
$$

As is well known, existence and regularity of the solution for the following problem

$$
\left\{\begin{array}{cl}
-\operatorname{div}(M(x, u) \nabla u)+g(x, u)|\nabla u|^{2}=f(x) & x \in \Omega, \tag{4}\\
u(x)=0 & x \in \partial \Omega,
\end{array}\right.
$$

was obtained by Boccardo, Murat and Puel [6], Bensoussan, Boccardo and Murat [2] and Boccardo, Gallout [4], where g is nonsingular, that is g is a Caratheodory function on $\Omega \times[0, \infty)$ with data f in suitable Lebesgue spaces and $M(x, u)$ is a Caratheodory bounded function subject to certain structural inequalities. The study of these problem arises from the calculus of variations if $0 \leq f \in L^{m}(\Omega)$ with $m \geq N / 2$ and

$$
\begin{equation*}
g(x, u)=\frac{1}{u^{\theta}}, \tag{5}
\end{equation*}
$$

where $\theta \in(0,1)$. Which is considered by J-P. Puel in [10].
Let us note that in [3] the authors considered problem (4) with

$$
\begin{equation*}
g(x, u)=\frac{Q(x, u)}{u^{\theta}}, \tag{6}
\end{equation*}
$$

where $\theta \in(0,1)$ and $M(x, u)$ is a bounded function subject to certain structural inequalities.

Moreover, we refer to [5] where shown the existence and regularity of positive solutions to the differential problem

$$
\left\{\begin{array}{cc}
-\operatorname{div}\left[\left(a(x)+u^{q}\right) \nabla u\right]+b(x) \frac{1}{u^{\theta}}|\nabla u|^{2}=f & \text { in } \quad \Omega \tag{7}\\
u>0 & \text { in } \quad \Omega \\
u=0 & \text { on } \quad \partial \Omega,
\end{array}\right.
$$

depending on the values of $q>0,0<\theta<1$, and on the summability of the datum $f \geq 0$ in Lebesgue spaces.

The purpose of this paper is to focus our attention on problem (1) in the case where $1 \leq \theta<2$ and $M(x, u)$

[^0]: * Jaouad Igbida is with Labo DGTIC, department of Mathematics, CRMEF El Jadida, Morocco. E-mail: jigbida@yahoo.fr
 †Aziz Bouhlal And H. Talibi are with Labo Math Appli, Faculty of Sciences, B. P. 20, El Jadida, Morocco. E-mails: a.bouhlal86@gmail.com, talibi_1@hotmail.fr
 ${ }^{\ddagger}$ A. El Hachimi is with Department of Mathematics, Faculty of Sciences, Agdal Rabat, Morocco. E-mail: aelhachi@yahoo.fr
 ${ }^{\S}$ Manuscript received May, 2017; revised January 2018.

